

Isolation and characterization of novel Streptomyces strain from Algeria and its in-vitro antimicrobial properties against microbial pathogens

Journal club

Supervisor: Dr. Yadollah Bahrami By: Reza Amraei Medical Biotechnology Student (MSc) (Rezair1988@gmail.com)

Kermanshah University of Medical Sciences
Medical Biotechnology Group

2021-2022 IF: 3.718 open access journal Cite score 2020: 4.9 Cite score 2021: 7.8

- Scope:
- infection prevention and control
- Microbiology
- infectious diseases
- public health
- application of healthcare epidemiology to the evaluation of health outcomes

introduction

- A constant need for the development of antibiotic from natural products is must.
- 22/000 active natural product from microorgamism
- Microorganisms like:
- 1. Actinomycetes ———— %45 (specially from Streptomyces)
- 2. Pseudomonas
- 3. Myxobacteria
- 4. Cyanobacteria
- 5. Filamentous fungi

introduction

- Gram +, high C+G genome, Filamentous, aerobic.
- Genera Streptomyces and Micromonospora produce %70 of anitibiotics.

Material and method

Isolation of actinomycetes

All culture media from sigma company

- Different samples such as sediments and water were collected aseptically from different locations from Gueldaman cave
- Water → Sterile tube (4 C)
- sediments → sterile bags (air dried 7 days in petri dishes)
- Culture media:
- 1. Bennett agar
- 2. TSA (Tryptic soy agar)
- 3. GLM (Yeast extract-malt extract agar)
- 4. Chitin-vitamins agar
- 5. ISP2 (international streptomyces project)
- GLP (Glucose-Yeast Extract-Peptone)

cycloheximide (50 g ml-1) Nystatin (30 g ml-1)

nalidixic acid (30 g ml-1)

- 10 gr /10ml added to 90ml NS → 100µl added to culture media
- Incubate 2-4 weeks at 28° C
- suspected actinomycetes colonies were identified based on morphological characters and purified on Bennett medium for routine laboratory studies
- Morphological features
- 1. Gram staining
- 2. Light microscopy

For morphological characteristic (Mycelium and pigment):

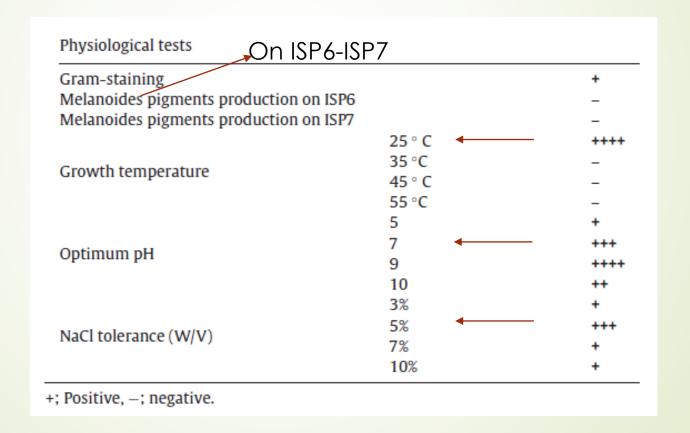
Character	Different cultivation medium									
	ISP-1	ISP-2	ISP-3	ISP-4	ISP-5	ISP-6	ISP-7	ISP-9	GLP	
Growth	++	+++	+++	+++	+++	+++	+++	+	+++	
Colour of substrate mycelium	Beige	Orange	Orange	Orange	Orange	Orange	Orange	White	Orange	
Colour of aerial mycelium	White	Orange	White	White	White	Beige	Beige	White	White	
Soluble pigments produced	(12)	=5	Orange	Orange	Orange	-	=	8 - 8	Orange	

^{+;} moderate growth, ++; good growth, +++; good growth, -; no growth.

DNA Extraction

- GenJET Genomic DNA purification kit (Thermofisher company)
- □ PCR:

Primers:

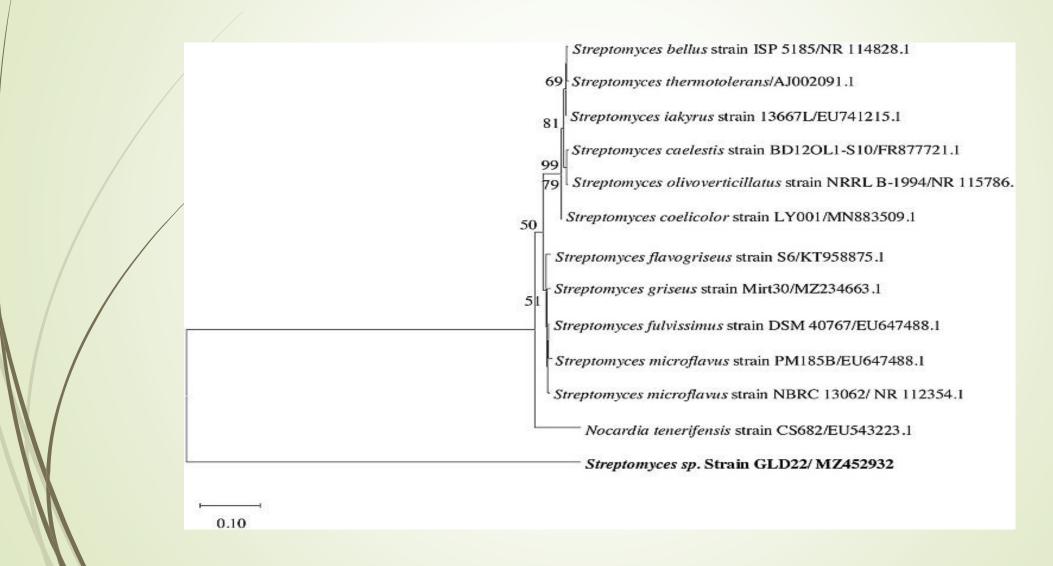

- 1. 785 F 5' GGATTAGATACCCTG GTA 3'
- 2. 907R 5' CCGTCAATTCMTTTRAGTTT 3'
- Evolutionary tree

Using Mega X

Isolation of GLD22

■ ISP2 medium

Physiological tests



Biochemical tests

Table 2Physiological and biochemical characters of *Streptomyces* strain GLD22.

Biochemical tests	Results	
Degradation of Starch	+	
Degradation of Casein	++	
Degradation of Gelatin	+	
Degradation of Glucose	7 <u>2</u>	
Degradation Lactose		
Degradation Saccharose	+	
Degradation Citrate	+++	
H ₂ S production	10 -7 0	
Production of Urease	+	
Mannitol		
Catalase	++	
Action on Skimmed milk	11.55	

Phylogenicity

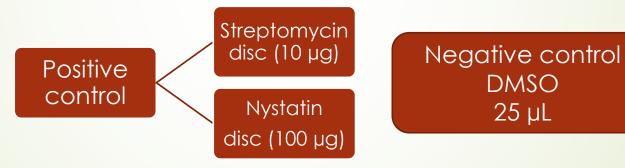
Culture media for metabolite production

PH= 7±/2

1. Modified Nutrient Glucose broth (MNG)

2. Bennett broth

3. AF broth

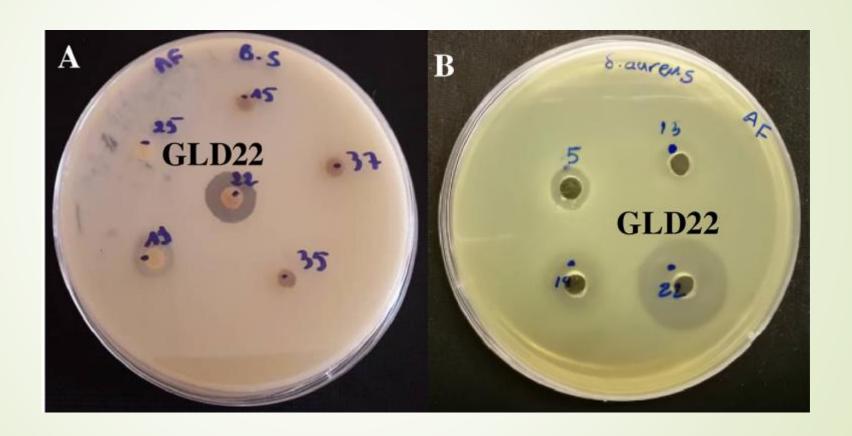

120 rpm shaker

2 weeks

28° C

☐ Use Ethyl acetate as solvent – concentrate using rotary Evaporator at 45°C

- Microorganism were cultured on Mueller-Hinton broth, M2, GLM, AF consistency of 10⁸ CFU/ml for bacteria and 10⁶ CFU/ml for fungi.
- The Antibiogram was assay using well diffusion method.
- Mueller-Hinton swabbed with suspension of pathogenic bacteria, the crude extract (30mg) was dissolved in 250µL DMSO- 25µL in wells.



→ 37° C – 24hr for bacteria / 28° C 24-48hr for Fungi

Staphylococcus aureus	ATCC 6538
Bacillus cereus	ATCC 25921
Bacillus subtilis	ATCC 6633)
Pseudomonas aeruginosa	ATCC 27853
Escherichia coli	CIP 53.126 / ATCC 8739
Klebsiella pneumoniae	IBMC Stras-bourg
Candida albicans	CIP 444 / ATCC 10231
Aspergillus fumigatus	MNHN 566
Fusarium oxysporum	MNHN 963917

National Museum of Natural His-tory (Paris, France) and Laboratories of Natural Products (Tlemcen, Algeria)

Pathogens	Diameter of inhibition zone (in mm)							
	Bennett	M2	GLM	AF	Chlormophenicol (10 µg/disc)	Nystatin (100 μg/disc)		
Gram-positive bacteria								
Staphylococcus aureus (ATCC 6538)	22	18	0	14	30	ND		
Bacillus cereus (ATCC 25921)	20	11	0	12	25	ND		
Bacillus subtilis (ATCC 6633)	21	7	0	14	25	ND		
Gram-negative bacteria								
Escherichia coli (CIP 53.126/ ATCC 8739)	10	0	0	0	25	ND		
Pseudomonas aeruginosa (ATCC 27853)	8	0	0	0	24	ND		
Klebsiella pneumoniae (IBMC Strasbourg)	0	0	0	0	19	ND		
Fungi								
Candida albicans (CIP 444)	0	0	0	0	ND	25		
Candida albicans (ATCC 10231)	0	0	0	0	ND	20		
Aspergillus fumigatus (MNHN 566)	0	0	0	0	ND	30		
Fusarium oxysporum (MNHN 963917)	0	0	0	0	ND	11		

Chemical composition of metabolites

☐ GC MS-QP2010 (gas chromatograph mass spectrophotometer)
The extract Contain about 14 compound

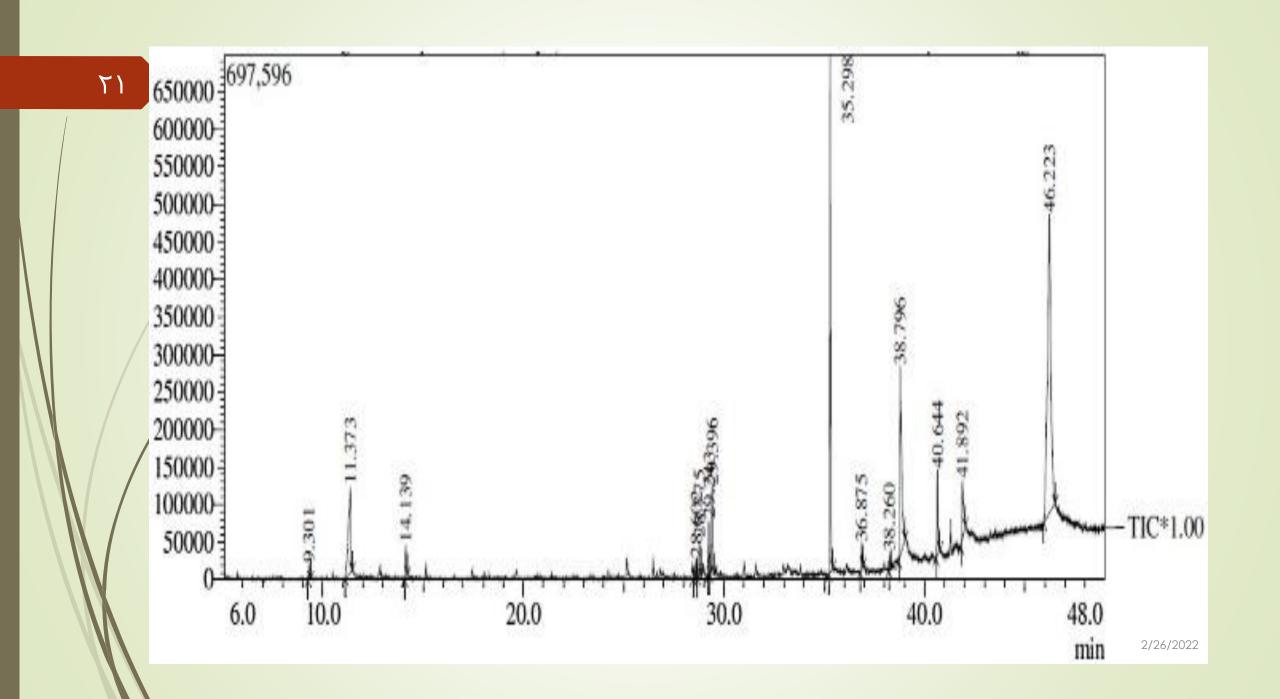


Table 6 Metabolite profiling of Streptomyces strain GLD22 using GC-MS analysis.

Peak ^a	Peak ^a Time ^b Area		Area% Height		Height%	Name	
1	9.301	57,200	0.53	19,916	0.98	Maltol	126.10
2	11.373	926,272	8.61	114,162	5.63	1H-Pyrrole-2-carboxylic acid	111.05
3	14.139	138,931	1.29	43,670	2.16	Propanoic acid	74.00
4	28.602	101,194	0.94	24,911	1.23	7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione	57.05
5	28.775	135,670	1.26	49,042	2.42	Cyclo(leucyloprolyl)	154.00
6	29.243	203,348	1.89	72,449	3.58	Hexadecanoic acid	73.00
7	29.396	362,352	3.37	117,568	5.80	Dibutyl phthalate	149.00
8	35.298	1,735,966	16.14	687,870	33.95	2-Propenoic acid, pentadecyl ester	55.00
9	36.875	99,214	0.92	33,182	1.64	Dihydroergotamine	125.05
10	38.260	63,341	0.59	22,694	1.12	4-(2-tert-Butyl-5-oxo-1,3-dioxolan-4-yl)butylformamide	130.10
11	38.796	1,474,607	13.71	250,401	12.36	Glycerol. betapalmitate	57.00
12	40.644	376,639	3.50	114,790	5.67	Lauryl. betamercaptopropionate	57.00
13	41.892	411,239	3.82	77,354	3.82	Glycerol. betapalmitate	57.05
14	46.223	4,670,248	43.42	398,034	19.65	2-tert-Butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl)phenol	57.05

 ^a Chromatogram peak number.
 ^b Retention time.

Discussion

- Lower activity against gram negative may due to their cell wall composition
- □ ISP2, TSA 28°C in other studies. In caves for metabolite production
- Maciejewska et al: %71 opposite Gram negative/ %94 against Gram positive (conflict)
- Belyagoubi et al: %62 of all isolates active against yeast, filamentous fungi, Gram positive and Gram negative bacteria (conflict)
- Nevertheless, this study needs furtherapproaches to identify the bioactive molecules present in the extract

Conclusion

The actinomycetes GLD22 isolated from cave can be potentially used for the production of commercially importantnew biomolecules