

In the name of GOD

Kermanshah University Of Medical Sciences

Journal Club Presentation

Supervisor: Dr Mohammadzadeh

Student: Ali Vafaei

May 2023

Cell

Article Small RNAs are modified with N-glycans and displayed on the surface of living cells

Ryan A. Flynn,^{1,10,11,12,*} Kayvon Pedram,¹ Stacy A. Malaker,¹ Pedro J. Batista,² Benjamin A.H. Smith,³ Alex G. Johnson,⁴ Benson M. George,⁵ Karim Majzoub,^{6,7} Peter W. Villalta,⁸ Jan E. Carette,⁶ and Carolyn R. Bertozzi^{1,9,*} ¹Department of Chemistry, Stanford University, Stanford, CA, USA ²Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA ³Department of Chemical and Systems Biology and ChEM-H, Stanford University, Stanford, CA, USA ⁴Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA ⁵Department of Cancer Biology, Stanford University, Stanford, CA, USA ⁶Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA 7IGMM, CNRS, University of Montpellier, Montpellier, France ⁸Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA ⁹Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA ¹⁰Present address: Stem Cell Program, Boston Children's Hospital, Boston, MA, USA ¹¹Present address: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA ¹²Lead contact *Correspondence: ryan.flynn@childrens.harvard.edu (R.A.F.), bertozzi@stanford.edu (C.R.B.) https://doi.org/10.1016/j.cell.2021.04.023

INTRODUCTION:

- ✓ Glycans are present in every cell studied to date across the kingdoms of life
- ✓ Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life.
- ✓ By chemical and biochemical approaches, defined small noncoding RNAs can be as third scaffold for glycosylation.
- ✓ the cellular role for RNA is more complex than that of a simple messenger. For instance, RNAs function as scaffolds, molecular decoys, enzymes, and network regulators across the nucleus and cytosol

✓ In this strategy, metabolically label cells or animals with precursor sugars functionalized with a clickable azide group. Once incorporated into cellular glycans, the azidosugars enable bioorthogonal reaction with a biotin probe for enrichment, identification, and visualization.

✓ In this strategy, we metabolically label cells or animals with precursor sugars functionalized with a clickable azide group. Once incorporated into cellular glycans, the azidosugars enable bioorthogonal reaction with a biotin probe for enrichment, identification, and visualization.

A glycan metabolic reporter is incorporated into cellular RNA

- ✓ First Hela cell treated by 100 mM Ac4ManNAz for up to 48 h and then RNA is extracted with warm TRIzol method.
- ✓ To visualize azide-labeled components, RNA samples added to dibenzocyclooctyne-biotin (DBCO- biotin) in denaturing conditions (50% formamide) at 55°C, subsequently separated by denaturing gel

electrophoresis and analyzed by blotting

6

✓ treatment of RNA from Ac4ManNAz-labeled HeLa cells with DNase did not affect the glycoRNA signal, whereas treatment with an RNase cocktail efficiently digested the total RNA as well as the biotinylated glycoRNA

- Human embryonic stem cells (H9), a human myelogenous leukemia line (K562), a human lymphoblastoid cell line (GM12878), a mouse T cell acute lymphoblastic leukemia cell line (T-ALL 4188), and Chinese hamster ovary cells (CHO) all showed evidence of the presence of glycoRNA.
- ✓ H9 and 4188 cells showed significantly more labeling with Ac4ManNAz per mass of total RNA than other cell types

✓ Next, assessed this labeling in vivo.

- ✓ To this end, performed intraperitoneal injections of Ac4ManNAz into mice for 2, 4, or 6 days.
- In the liver and spleen, the organs that yielded enough total RNA for analysis, we observed dose-dependent and RNase-sensitive Ac4ManNAz labeling of RNAs in the same MW region as glycoRNAs from cultured cells
- ✓ These data suggest that glycoRNA is not an artifact of tissue culture and occurs broadly across multiple cell and tissue types and at various abundances.

glycoRNAs are small noncoding RNAs

 Across all cell types and organs tested, glycoRNA was found to migrate very slowly by denaturing agarose gel electrophoresis.

- ✓ We hypothesized that if glycoRNA's are indeed large RNAs, they would likely be polyadenylated (poly-A).
 However, we were consistently unable to purify glycoRNA from extracted RNA via poly-A enrichment.
- ✓ This was not due to cleavage or degradation of the glycoRNA during the poly-A enrichment procedure.

✓ As an alternative enrichment strategy, we used a commercial fractionation method that leverages length-dependent RNA precipitation and binding to silica columns to separate out "large" (>200 nt) from "small" (<200 nt) transcripts (STAR Methods). To our surprise, the glycoRNA fractionated exclusively with the small RNA population of total RNA

- ✓ The sucrose gradient robustly separated the major visible RNAs such as small RNAs/tRNA, 18S rRNA, and 28S rRNA
- ✓ glycoRNA's anomalous migratory behavior is caused by its associated glycans

A common set of transcripts are glycosylated across diverse cell types

Label and label-free detection of sialic acid in glycoRNA

- \checkmark Next step is determination the glycan structures on glycoRNAs
- ✓ Use 2 different method: metabolic and non-metabolic

✓ To exclude the possibility that Ac4ManNAz is shunted into unexpected metabolic pathways, used 9-azido sialic acid (9Azsialic acid), which is directly converted into CMP-sialic as a metabolic label.

 ✓ assessed the contribution of canonical sialic acid biosynthesis enzymes through the use of P-3F_{AX}-Neu5Ac, a cell-permeable metabolic inhibitor of sialoside biosynthesis

 ✓ assessed the contribution of canonical sialic acid biosynthesis enzymes through the use of P-3F_{AX}-Neu5Ac, a cell-permeable metabolic inhibitor of sialoside biosynthesis

- ✓ To confirm that glycoRNAs are sialylated, used an independent method not relying on metabolic reporters
- ✓ The fluorogenic 1,2-diamino-4,5-methylenedioxybenzene (DMB) probe is used to derivatize free sialic

acids for detection and quantitation by high-performance liquid chromatography (HPLC)-fluorescence

Canonical N-glycan biosynthetic machinery contributes to glycoRNA production

- ✓ There are two main classes of glycans on proteins, N- and O-glycans, and both can be sialylated
- ✓ The IdID mutant CHO cell line lacks the ability to interconvert GlcNAc into GalNAc
- ✓ human K562 cell line with a CRISPR-Cas9 targeted KO of UDP-galactose-4-epimerase (GALE), which mimics the phenotype of the ldID CHO cell line

20

- Oligosaccharyltransferase (OST) mediates protein Nglycosylation by transferring a 14-sugar glycan to asparagine residues on nascent polypeptides during their translocation through the Sec/translocon
- ✓ tested the effect of NGI-1, a specific and potent small molecule inhibitor of OST, on glycoRNA production Hel a cellular BNA

Mass spectrometry defines distinct compositions of glycans on RNA

- ✓ To develop a more precise view of the glycoforms associated with RNA, optimized a workflow based on PNGaseF-mediated release of glycans from pools of small RNAs, followed by analysis of those glycans by a porous graphitized carbon-based liquid chromatography MS strategy
- ✓ because the MS- based approach does not require sialic acid for enrichment or visualization, we were able to reveal an expanded set of glycan compositions that are often fucosylated and sometimes asialylated

glycoRNAs are associated with cellular membrane

- ✓ The localization of Y RNAs has been reported to be mainly cytoplasmic with a minor fraction in the nucleus
- ✓ Other major classes of glycoRNA transcripts such as tRNAs and sn/snoRNAs are classically localized to the soluble cytosol and nucleus, respectively.
- ✓ To determine where glycoRNAs are distributed inside cells, used two biochemical strategies:
 1 Isolates nuclei away from membranous organelles and the cytosol
 - 1. Isolates nuclei away from membranous organelles and the cytosol
 - 2. Separates the soluble cytosolic compartment away from membranous organelles

- ✓ The localization of Y RNAs has been reported to be mainly cytoplasmic with a minor fraction in the nucleus
- ✓ Other major classes of glycoRNA transcripts such as tRNAs and sn/snoRNAs are classically localized to the soluble cytosol and nucleus, respectively.
- ✓ To determine where glycoRNAs are distributed inside cells, used two biochemical strategies:
 - 1. Isolates nuclei away from membranous organelles and the cytosol
 - 2. Separates the soluble cytosolic compartment away from membranous organelles

glycoRNAs gain access to the surface of living cells

✓ done strictly at 4oC to reduce or eliminate vesicular trafficking

Siglec receptors and anti-RNA antibodies recognize cell surface glycoRNAs

✓ Use antibodies that targeting RNA which have been associated with systemic lupus erythematosus (SLE)

Chemical linkage of RNA to glycan

- ✓ Although the precise nature of the glycan-RNA linkage has not yet been determined, we speculate that direct glycosylation of native RNA bases is unlikely.
- ✓ The observed sensitivity to PNGase F, which cleaves the glycosidic linkage between asparagine and the proximal GlcNAc of N-glycans, implies an amide bond-containing linker that native nucleobases lack.
- ✓ It is possible that a precursor guanosine modification is necessary to establish an asparagine-like functionality capable of modification by OST (Oligosaccharyltransferase), or that a preassembled N-glycan carrier moiety is attached to nu- cleobases by some other chemistry.
- ✓ These possibilities are consistent with sedimentation of glycoRNAs in the sucrose gradient, which suggests a linker with a relatively small molecular weight.

Limitations of study

- ✓ A major focus of the work presented leverages selective metabolic labeling of sialic acid with Ac4ManNAz.
- ✓ Because not all glycans contain sialic acid, it is possible that glycoform's beyond those reported here may also be conjugated to RNAs
- ✓ The precise linkage between the RNA template and carbohydrate remains unknown