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INTRODUCTION:

v’ Glycans are present in every cell studied to date across the kingdoms
of life

v’ Glycans modify lipids and proteins to mediate inter- and

intramolecular interactions across all domains of life.

v’ By chemical and biochemical approaches, defined small noncoding

RNAs can be as third scaffold for glycosylation.
v" the cellular role for RNA is more complex than that of a simple
messenger. For instance, RNAs function as scaffolds, molecular

decoys, enzymes, and network regulators across the nucleus and
cytosol
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v" In this strategy, metabolically label cells or animals with precursor sugars functionalized with a clickable

azide group. Once incorporated into cellular glycans, the azidosugars enable bioorthogonal reaction with a

biotin probe for enrichment, identification, and visualization.
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v’ In this strategy, we metabolically label cells or animals with precursor sugars functionalized with a click-

able azide group. Once incorporated into cellular glycans, the azidosugars enable bioorthogonal reaction

with a biotin probe for enrichment, identification, and visualization.




A glycan metabolic reporter Is incorporated @ﬁ Tssus culure
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v treatment of RNA from Ac4ManNAz-labeled Hela cells with DNase did not affect the glycoRNA signal,

whereas treatment with an RNase cocktail efficiently digested the total RNA as well as the biotinylated
glycoRNA
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HeLa GM78 K562 4188 CHO
- + - + —-— + - + — + RNase cocktail

v" Human embryonic stem cells (H9), a human myelogenous 2‘;
leukemia line (K562), a human lymphoblastoid cell line S
(GM12878), a mouse T cell acute lymphoblastic leukemia 0_;":
cell line (T-ALL 4188), and Chinese hamster ovary cells  *° Strep (light)

(CHO) all showed evidence of the presence of glycoRNA.

v" H9 and 4188 cells showed significantly more labeling with
Ac4ManNAz per mass of total RNA than other cell types
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Next, assessed this labeling in vivo.

To this end, performed intraperitoneal
injections of Ac4ManNAz into mice for 2, 4, or
6 days.

In the liver and spleen, the organs that yielded
enough total RNA for analysis, we observed
dose-dependent and RNase-sensitive
Ac4dManNAz labeling of RNAs in the same MW
region as glycoRNAs from cultured cells

These data suggest that glycoRNA is not an
artifact of tissue culture and occurs broadly
across multiple cell and tissue types and at
various abundances.
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glycoRNAs are small noncoding RNAs

v Across all cell types and organs tested, glycoRNA was found to migrate very slowly by denaturing agarose

gel electrophoresis.

spleen in vivo RNA source

2 4 6 6 DaysofAc,ManNAz
— = =+ RNase Cocktail

- + — = Turbo DNase
RNase Cocktail
SUPERaseln

Hela cellular RNA
0 6 12 24 36 48 Ac,ManNAz (hrs)

glycoRNA glycoRNA glycoRNA
3
2
1
0.5
kb
Strep Strep Strep
kb Sybr Sybr Sybr

10




v" We hypothesized that if glycoRNA’s are indeed large RNAs, they would likely be polyadenylated (poly-A).
However, we were consistently unable to purify glycoRNA from extracted RNA via poly-A enrichment.

v" This was not due to cleavage or degradation of the glycoRNA during the poly-A enrichment procedure.
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v' As an alternative enrichment strategy, we used a commercial fractionation method that leverages
length-dependent RNA precipitation and binding to silica columns to separate out “large’” (>200 nt)

from “small” (<200 nt) transcripts (STAR Methods). To our surprise, the glycoRNA fractionated
exclusively with the small RNA population of total RNA
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v" The sucrose gradient robustly separated the major visible RNAs such as small RNAs/tRNA, 18S rRNA,
and 28S rRNA

v glycoRNA’s anomalous migratory behavior is caused by its associated glycans
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A common set of transcripts are glycosylated across diverse cell types

Hela vs H9 small RNA
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Label and label-free detection of sialic acid in glycoRNA

v Next step is determination the glycan structures on glycoRNAs

v Use 2 different method: metabolic and non-metabolic
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v" To exclude the possibility that Ac4ManNAz is shunted into unexpected metabolic pathways, used 9-azido
sialic acid (9Azsialic acid), which is directly converted into CMP-sialic as a metabolic label.
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v’ assessed the contribution of canonical sialic acid
biosynthesis enzymes through the use of P-3F,,-Neu5Ac,

a cell-permeable metabolic inhibitor of sialoside
biosynthesis
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v’ assessed the contribution of canonical sialic acid
biosynthesis enzymes through the use of P-3F,,-Neu5Ac,

a cell-permeable metabolic inhibitor of sialoside
biosynthesis
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v' To confirm that glycoRNAs are sialylated, used an independent method not relying on metabolic
reporters

v The fluorogenic 1,2-diamino-4,5-methylenedioxybenzene (DMB) probe is used to derivatize free sialic

acids for detection and auantitation bv high-performance liauid chromatogranhv (HPLC)-fluorescence

1 1. RNA T 2 3 Sybr
S5 0.34 2. NeubGc
& 1 3. NeubAc
©
E:. 0.2 - Other sialic
W acid forms
L]
]
-
3
9 0.1 /7\
E._} 4
O i .
s |
= 1—A\ || Sialic acid ref |
£ o] ‘\_A_M ialic acid reference pane
1] i
= A A — H9 total RNA + no enzymes
o L .'\J\«_J !
Q A NI | NRUAS N S~ 1 1 Ho total RNA + VC sialidase
= Y. 17
0 A . A ~ J\L jL H9 total RNA + RNase cocktail

0 5 10 15 20 25 Elution time (min) 19




Canonical N-glycan biosynthetic machinery contributes to glycoRNA production

v There are two main classes of glycans on proteins, N- and O-glycans, and both can be sialylated
v" The IdID mutant CHO cell line lacks the ability to interconvert GIcNAc into GalNAc

v" human K562 cell line with a CRISPR-Cas9 targeted KO of UDP-galactose-4-epimerase (GALE), which
mimics the phenotype of the |dID CHO cell line
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v Oligosaccharyltransferase (OST) mediates protein N-
glycosylation by transferring a 14-sugar glycan to asparagine
residues on nascent polypeptides during their translocation
through the Sec/translocon

v’ tested the effect of NGI-1, a specific and potent small molecule

inhibitor of OST , on glycoRNA nroduction
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Mass spectrometry defines distinct compositions of glycans on RNA

v" To develop a more precise view of the glycoforms associated with RNA, optimized a workflow based
on PNGaseF-mediated release of glycans from pools of small RNAs, followed by analysis of those
glycans by a porous graphitized carbon-based liquid chromatography MS strategy

v because the MS- based approach does not require sialic acid for enrichment or visualization, we

were able to reveal an expanded set of glycan compositions that are often fucosylated and
sometimes asialylated
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glycoRNAs are associated with cellular membrane

v" The localization of Y RNAs has been reported to be mainly cytoplasmic with a minor fraction in the
nucleus

v Other major classes of glycoRNA transcripts such as tRNAs and sn/snoRNAs are classically localized
to the soluble cytosol and nucleus, respectively.

v" To determine where glycoRNAs are distributed inside cells, used two biochemical strategies:
1. Isolates nuclei away from membranous organelles and the cytosol
2. Separates the soluble cytosolic compartment away from membranous organelles
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v The localization of Y RNAs has been reported to be
mainly cytoplasmic with a minor fraction in the
nucleus

v" Other major classes of glycoRNA transcripts such as
tRNAs and sn/snoRNAs are classically localized to
the soluble cytosol and nucleus, respectively.

v To determine where glycoRNAs are distributed Sybr Sybr

inside cells, used two biochemical strategies:

1. Isolates nuclei away from membranous
organelles and the cytosol

2. Separates the soluble cytosolic compartment
away from membranous organelles
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glycoRNAs gain access to the surface of living cells

v done strictly at 4oC to reduce or eliminate vesicular trafficking
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Siglec receptors and anti-RNA antibodies recognize cell surface glycoRNAs

v' Use antibodies that targeting RNA which have been associated with systemic lupus erythematosus
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v" Approximately 20% of a population of cultured Hela cells showed positivity with J2 staining
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Chemical linkage of RNA to glycan

v' Although the precise nature of the glycan-RNA linkage has not yet been determined, we speculate
that direct glycosylation of native RNA bases is unlikely.

v" The observed sensitivity to PNGase F, which cleaves the glycosidic linkage between asparagine and
the proximal GIcNAc of N-glycans, implies an amide bond-containing linker that native nucleobases
lack.

v’ It is possible that a precursor guanosine modification is necessary to establish an asparagine-like
functionality capable of modification by OST (Oligosaccharyltransferase), or that a preassembled
N-glycan carrier moiety is attached to nu- cleobases by some other chemistry.

v" These possibilities are consistent with sedimentation of glycoRNAs in the sucrose gradient, which
suggests a linker with a relatively small molecular weight.




Limitations of study

v" A major focus of the work presented leverages selective metabolic labeling of sialic acid with
AcdAManNAz.

v Because not all glycans contain sialic acid, it is possible that glycoform’s beyond those reported
here may also be conjugated to RNAs

v' The precise linkage between the RNA template and carbohydrate remains unknown
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